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Asymptotic properties of induced maximum likelihood estimators
of non-linear models for item recponse variables:
the finite-generic-item—pool case

Douglas 4. Jones
Advanced Statistical Technologies Corporation

Abstract

The progress of modern mental test theory depends very much on the tech-
niques of maximum likelihood estimation, and many popular applications make use
of likelihoods induced by logistic item response models. While, in reality,
item responses are nonrepiicate within a single examinee and the logistic models
are only ideal, practitioners make inferences using the asymptotic distribution
of the maximum likelihood estimator derived as if item responses were replicated
and satisfied their idezal model. This article proposes a sample space
acknowledging these two realities and derives the asymptotic distribution of the
induced maximum likelihood estimator.

This article assumes that items, while sampled from an infinite set of
items, have but a finite domain of alternate response functions: this situation
is the case of the finite-generic-item-pool. Later articles will attempt to
remove this assumption.

Using the proposed sample space, the article applies the statistical func-
tional approach of von Mises to derive the influence curve of the maximum like-
lihood estimator; to discuss related robustness porperties; and to derive new
classes of resistent estimatcrs. This article's general purpose is revealing
the value of these methods for uncovering the relative merits of different item
response functions. Proofs and mathematical derivations are minimized to
increase the accessability of this complex subject.
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1. INTRODUCTION

While maximum likelihood procedures are popular in item response theory
(IRT), (Lord, 1980), their insensitivity to departures from assumptions is
serious enough to warrant cautious use and further study (Wainer-Wrigh+, 1980;
Jones, 1982). The purpose of this article is to explore the behavior of the
procedures when the model is not true.

To apply some of the concepts of robustness theory, we found that some of
the more important concepts required reformulating the maximum likelihcod pro-
cedures. In particular the study of the robustness of the maximum likelihood
estimator (MLE) requires viewing it as a function of the empir._al probability
distribution function (PDF). The original formulation of item response theory,
as a regression problem, does not allow the summarization of the data in terms
of an empirical PDF. In §2, we recast the structure of the problem so that the
data can be i1eplaced by an empirical PDF and we reformulate the MLE as a iunc-
tion of it.

In §3, we derive the asymptotic distribution of the MLE when the true PDF
is not generated by the assumed wodel. These results are basic to understanding
the sensitivity of the MLE to departures from assumptions. They make heavy use
of von Mises's approach to statistizal functions (Fillippova, 1982).

In §4, we apply the asymptotic formulas derived in §3 to three popular item
response models. A measure of goodness-of-fit, compatable with the MLE, is
employed to play the role of the mean squared error (McCullagh-Nelder, 1983;
Pregibon, 1981). These results reveal that certain item response models reverse

the scale of ability.
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In §5, we formulate the basic robustness criteria associated with Hampel 's
influence curve (IC) (Hampel, 1974; Welsch-Krasker, 1982). We Qerive a relation
between the IC and the maximum bias of the MLE as the true PDF is varied within
an e-contamination neighborhood of the modeled PDF (Huber, 1981). We also
derive the breakdown point (Huber, 1981) of the MLE for certain types of depar-
tures from the assumptions. The analysis of these criteria shows how the notion
of robustness in IRT is fundamentally different from linear and logistic
regression problems.

2. GENERAL NOTATION AND STRUCTURE

The basic formulation of IRT based on maximum likelihood is: u=1 (correct)
or u=0 (incorrect} is observed for each item i with likelihood, given a real
latent parameter 8, equal to

hj(u;8) = Py(8)Y [1-Py(8)]1-v

and with P;(6) the ith jtem response model. The total likelihood basad on data

uj,u2,...,uy and models Py,Py,...,P, is:
n
L(8:uy,...,up, P1,...,Pp) = I hy(uy;0).
i=1
For robustness studies, we need to allow for the possibilicy that the item
response models are inaccurate. Thus, we assume that E(uj)#Pj(8). But we

retain the assumption of local independence and call Pj(8) an operational model.

To accommodate items with different difficulties and discriminating powers,
and simultaneously, apply standard asymptotic theory, we formulate the sample
space as: ‘

(Sample Space) § = {(u,x): u=0,1; xeX}

X

finite set indexing items.
An observation on S is denoted by s or t, etc., and is generated by administer-

ing a randomly chosen item, x, to obtain a response, u.
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An arbitrary probability distribution function (PDF) on S is denoted by 1.
A probability distribution over X is denoted by p. The conditional probability
distribution of u given x is denoted by f(u;x). For arbitrary n, there is a p
and f(u;x) such that:
n(s) = f(u;x) p(x), s = (u,x).
Because u is binary; f(u;x) is Bernoulli with some probability of success, H*(x)
satisfying:
£(u;x) = T*(x)u [1-M%(x)]1-u.
The empirical PDF defined for a sample s1,Sj3,...,S, is defined by denoting

0g to be a point mass at s and
. n
na(t) =n1 ¥ 85, (t).
i=1

It is a PDF on S. The distance Letween two PDF's { and n is defined as |{-n| =

max|§(s)-n(s)|.
sesS
A parametric family of PDF's on S is defined by {ng:0 real}. Values of ng

are denoted by n(s;08). A special type of a parametric family is generated by a
set of operational models:
Operational Models: {N(0;x):xeX;0 real}
Parametric Family: f(u;e,x)=H(9;x)“{1-H(9;x)}1’u
n(s;08)=f(u;8,x)p(x).

The traditional structure of IRT is related as follows: the ith obser-
vation is uj with model Pj(0). Let xj; be the index value of the ith chosen item
where NI(0;x4)=P;(0). Let sj=(uj,Xx4), so that n(sy;0)=f(uy;6,x;)p(x3)=hj(ui;8)
p(xi).

The likelihood based on the sample s1,52,...,S, is:




L(e;sl,SZ,...,Sn) =1 n(si;e).

If {p(x3): i=1,...,n} contains no information about 8, MLE's based on the two
likelihoods are identical.
The log-derivative of the parametric PDF is denoted by £(s;0) = (d/d8) log

n(s;0). If it exists, a solution of the implicit equation
n

(Normal Equation) 0= Y 2(s4;0)
i=1

is denoted by én and is called the MLE. This equation simplifies with opera-
tional models as follows: The logit of an operational model JI(8;x) and its
derivative is
g(8;x) = log M(8;x)/[1-M(8;x)]
g (8;x) = v(08;x)"1 N"(08;x) , where

v(0;x) = lI(8;x) [1-H(9;x)].

Using the definition of ng, we have:
2(s;8) = g7 (8;x) [u-M(8;x)]

and the normal equation becomes
n

g87(8;x5) [us-M(8;x5)] = ¥ v(8;x4)71 [ug-M(8;x5)] M (8;x4)
1 i=]1

o
n
neH~1s

i
The Fisher information of the parametric PDF, ng, is

I(8) = -F 2°(s;8) n(s;0) = § 2£(s;8)? n(s;0)

where the sum is over all s in S. This information identity follows from the
total differential of 0 = Z 2(s;0) n(s;0); using n"(s;8) = n(s;0)(d/d8)log n(s;0)
= n(s;0) 2(s;6) we have,

0

I 27(s;0)n(s;0) + J2(s;0)n"(s;0)

T £7(s;0)n(s;8) + T2(s;0)*n(s;8).

Note fcr computational purposes: I(8) =73 g°(8;x)? v(8;x) p(x).




Example. The onme-parameter logistic (1PL) and two-parameter logistic (2PL)

item respons: models are characterized by their logits:
g(0;x) = a(x)[8-b(x)] where a(x) > 0, —= < b(X) < e are the

discrimination and difficulty parameters for item x. Hence,
n
2(s;0) = a(x)[u-N(08;x)] and 0 = ¥ a(»y)[ujy - W(B4;x;)] is the normal

equation. The Fisher information is 1{8) = } a(x)? v(8;x)p(x), Sum

over all X.

We wish to generalize the normal egquation in two ways: first, we want to
show the explicit relation between én and ﬁn; second, we wish to consider esti-
mators that are more general than MLE's. .

We rewrite the normal equation using the empirical PDF as

0 =7 2(s; 8) ny(s)
where it will be understood that the sum is always over S. We see that the MLE
depends explicitly on the empirical PDF, we denote this dependence by
8, = 8(ng) -

If the enpirical PDF is replaced by an arbitrary PDF, the normal equation

defines a general functional relationship, 68(n), between 8 and n: we call 6(n)

a statistical functional.

We define M-type estimators generated by a score function $(s;8) by the

equation

n -

0=n"1F 9(sy; 0) =F w(s;0)nn(s).

i=1
We see that ¥(s;8)=L(s;0) generates the MLE. We add this generality because our
methods of proof in the next section are really about M-type estimators with the
MLE results following as a special case. Note that the notion of a statistical
tunction applies to M-type estimators also. More definitions that we need

follow.
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We define

w(0,n) =Y w(s;9)n(s)

for an arbitrary PDF and score function. The derivative of m(0,n) with respect
to 8 is m'(8,n). Note that m'(8,np) means m'(8,n) evaluated with n=ng. The
normal equation is 0=m(6,ﬁn) and Fisher's information is I(8) = -m'(8,ng) with
¥=L. The Newton-Rapheson algorithm for solving the normal equation is
0t+l = 6t + m(6%,n,)/-n' (68%,0,);
if ¢=2 the Fisher scoring algorithm is
ot+l = gt + m(6t,n,)/I(6%).

Let ¥(s;0) be a given score function and let 0y denote the value of 0 that
solves the equation 0 = m(0,n), corresponding to this score function. If the
PDF n is a member of some parametric family and satisfies n=ngy for a given
fixed parameter value 8; and if 9p=0;, then we say that the score function is
unbiased.

If ¢ is an unbiased score function, then 0=m(8,ng) for all 6. This fact

leads to an identity that is analogous to the Fisher information identity pre-

cented previously and is proven in exactly the same way. The identity is:
-m'(8,ng) =Y ¥(s;0)2(s;0)n(5;0).

If one replaces m'(e,ﬁn) by its expectation under ng in the Newton-Rapheson
algorithm, one obtains an algorithm that is analogous to Fisher scoring. If #
is an unbiased score function, then cne may use the above identity for -m'(e,ne)
to avoid evaluating the derivative of ¢.

An important subclass of unbiased score functions are generated by an

arbitrary weight function w(0;x) where

¥(s;8) = w(0;x)[u-TI(0;x)]N"'(6;x).

If we choose
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w(0;x) = v(08;x)"1
then ¥(s;8) = ¢(s;6) and we are back to the ME. Other choices of the weight
function lead to resistant estimators. For example, Jones (1982) suggests
w(8;x) = v(!!;x)h'1 with h20, a tuning constant. We can stay in the class of
exponential families with arbitrary response variable u, as long as
N(8;x)=E(u|8,x) and w(8;x)=var(u|8,x)"] (see Jennrick and Moore, 1975).
Jones' resistant estimator could be generated for these families also by letting
w(08;x)= var(u|9,x)h'1. We obtain a more general <lass of estimators by allowing
the weight functions to depend on the response: ¥(s;0)=w(08;s)[u-TI(8;x)]N"(8;x).
Krasker and Welsch (1982) consider these estimators for the general linear
model. Stefanski, Carroll, and Ruppert (1984) consider these estimators for the
logistic model.

An algorithm based on Gauss-Newton's algorithm for solviag normal equations
with score w(s;9)=w(9;s)[u-H(B;x)]H'(G;x) is as follows: (see hclland and Welsch,
1977) define dg = I'(8;x;) and wy = w(34; s;) then

t+1 t t t ¢t t t
8 =0+ [Ydywidi]™l Y dyowy [ug-M(6E;xp)].

This algorithm is iterative reweighted least squares: at convergence
§n=9“, so if we define tre pseudo-observation zi=dién + [ug - H(én;xi)] then
By = [T dj wy dg]71 Y dg wy 24,
See Pregibon (1981) and McCullagh and Nelder (1983) for a similar algorithm
based on the exponential family with linear predictors. Note that this

algorithm is also identical to Fisher scoring.
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3. GENERAL ASYMPOTOTIC THEORY OF M-TYPE ESTIMATORS

We present consistency and asymptotic normality (AN) results in this sec-
tion. In the first part we confine attention to the main results and in the
second part we supply the proofs. Readers may skip the proofs and move on to
the next section. In the main results we discuss cc .ditions for consistency ard
AN. VWe also characterize ar approximation t> the M-type estimator that is
imporcant for AN results and for the robustness results in §5.

3.1 Main Results: Consistency

Suppose the sample s;, sj,...,s; is IID with PDF n. The empirical PDF ﬁn
satisfies |ﬁn-n|»0 wp 1 as n+e. This fact gives us the obvious candidate for
the limit of an M-type estimator, 6y which solves 0=m(8p,n); when does én+eo? It
is possible that the equation 0=m(9,ﬁn) yielding én has more than one solution,
i which case a consistency result may be about only one of the possible sequen-
ces of M-type estimators. Also, it is possible that the equation 0=m(8p,n) does
not have a local solution, in which case a consistency result would not be use-
ful. Some known results follow.

Huber (1964): Let 0y be the unique so.ution. If ¥(s;8) is monotone in 6,
for each seS then every sequence én+eo wpl.

Boos (1977): Let 8g be an isolated solution. If ¢(s,8) is :ontinuous in 0
for each seS then there exists a sequence én+eo wpl.

Huber (1967, 1980): Let 8p be an unique solution. Let |=(8,n)| be bounded
from zero as |9|*~. If ¢¥(s:8) is continuous in 0 for each seS, then every
sequence én+eo wpl.

The various conditions for consistency will be satirfied when we impose

stricter conditions for AN.

Example. For the 2PL model II(8;x) is strictly monotone increasing and hence

13




#(s;8) = a(x)[u-N(8;x)] is monotone, the solution 6y to 0=m(8g,n)=

M a(x)[ﬂ*(x)-ﬂ(eo;x)]p(x) is unique with I®(x) arbitrary. Thus for n
arbitrary, Huber (1964) applies. If n=ng, for some fixed 6;, then
80=61 is the unique solution.

3.2 Main Results: Asymptotic Normality

The first order asymptotic properties of M-type estimators are charac-

terized by the influence curve. The influence curve (IC) is defined as: let

se€S and 0g a point mass at s, for €>0

IC(s,n,¥) = lim 8(n+e(65-1))-0(n) .
e-+0 T

Denoting 8(8g;e) = B(n+e(85-n)), we see that the influence curve is an ordinary
derivative of 8(8g;€) evaluated at 0: IC(s,n,$) = (d8(8g;e)/de)g. For M—-type
estimators, it will be proved later that for { an arbitrary PDF, z IC(s,n,¥)E(s)
= (d8(&;e)/de)g. This latter characterization allows us in §5 to make an impor-
tant connection between the bias and the influence curve of MLE's. Also for M-
type estimators the influence curve is:
(**) IC(s,n,¥) = ¥(s;80)/-m"(8g,n)
where throughout the remainde~ of this section 8p satisfies 0=m(8p,n) and
m’(8y,n)<0.
Example. For the 2PL end n arbitrary
IC(s,n-9) = a(x)[u-M(B80;x)]/] a(x)* v(Bg;x)p(x).
Normally the denominator would depend explictly on H*(x) but does not,
since g''(08;x)=0. However, it does depend on H*(x) through 8 which
solves 0 = ¥ a(x)[F*(x)-H(x;Go)]p(x).
The primary application we make of the influence curve in this section is

to get a leading term apprcaimation:

. n
(*) Bn-Oo = n'l Z IC(Si,ﬂ ’d’)"'Rn
i=1
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where R, is the remainder term. We show below nt Ry, # 0 in probability, thus
the behavior of ﬁi(en-eo) is deduced from the approximation and the Lindeberg-
Levy central limit theorem. The sufficient conditions for AN cf M-type
estimators are listed under (C). They are implied by conditions (D) when the
M-type estimator is an MLE:

(C) There exists an open interval @y and a constant ¢>0 such that for all 6 in
R
~1: $(s;0); $'(s;0); 9''(s;0) exist for all seS, with the first two continuous
in 8;
C-2: m'(B¢,Ne) < 0 for all 0 S € S 1 and §: |n-|Se where 8, solves O=m(6,r¢)
and g =0 + €(§-n).
(D) Define Qg = {6: v(8;x)>0 for all xeX} then suppose Qg is not empty and for
all 8eQ
D-1: NM'(8;x); M''(8;x); I'''(0;x) exist for all x, with the first two continuous
in 8;
D-2: ¥ g"(G;x)[ﬂ*(x)-ﬂ(e;x)]p(x) <) g'(8;x)% v(8;x)p(x) for M*(x) in an open
interval for each x.
Theorem 1. Assume (C) then nf(én-eo) is AN mean O and variance:
092 = ¥ IC(s,n,¥)? n(s).
Corollary. Assume (C-2) and n=ng,, 8; fixed. If 9 is unbiased, i.e. 0p=081,
n#[8,-80] is AN with mean 0 and variance:
o = L ¥(s580)*n(s;00) /[T ¥(s;00)8(s;80)n(s;00) ]* where £(s;8) =
(3/30) log n(s;0). Hence an unbiased M-type estimator is efficient
if and only if ¢ is proportional to £, or in other words the MLE is

optimal among M-type estimators with unbiased score functions.
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3.3 Proof of Arymptotic Normality

Define for any & PDF,

Mg =10 + €(§-n) and
8e = 08(n¢).

A second order Taylor saries expansion about 0 is
(Fkk) B¢ = 8p + (d0/de)ge + % (d?8/de?), a?,

0 < a <e. Under conditions (C) we shcw that this expansion is valid with e=1.
Using the expansion with £=ﬁn, we obtain the approximation (*), where R, is
expressed in terms of the second derivative of 8. To show that the IC has the
form (**) and that né Rn * 0 in probability we derive the first two derivatives
as follows.

Define M(R,e¢) = m(8,n). Because 0 satisfies M(8¢,e) = 0 for all 0%e<l,
the first and second total differentials with respect to ¢ are identically zero
and yield two simultaneous equations involving d3i8/del i=1,2:

(1) (3M/20)g_ dB/de + 3M/de = 0
(2) (3M/38)g, d20/de? + [(32M/382)g_ (d/de) + (324/303¢) g, ]d0/de
+ (92M/3€30) g, d8/de + 32M/3¢2 = 0.

Solving equations (1) and (2) for di8/del, j=1,2, and using 3M?/3¢? = C, we

have from equation (1):

s 2. () (x),

and from equations (1') and (2):
afe _(atM) (MY [ _ faMy . (a%M ) M\ /[m\
(2") de? "\a07 j8 \de a0 /8, €0 /0, \3e a8 o,
/
Now we obtain expression (*%) fcr the IC: Let 80 = 8(n), we have

aM/de = (3/3¢) m(8g,ne) = (3/3¢) ¥ w(s;8p)[n(s) + e(E(s) - n(s))]

=¥ ¥(s;00) [E(s) - n(s)] = Y ¥(s;08g) E(s). Substituting (3M/38)90 =m'(0g,n)

o 16
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and the last expression into (1') we have for any PDF §, (d6/de)g = ¥ 9(s;80)
£(s)/ -m'(8g,n). Thus for § = &g, we have IC(s,n,¥) = ¥(s;0g)/ -m'(8g,n).
With £=ﬂn, the empirical PDF, the MLE én = 0(n1) where n; is ne with e=1.

Using the expansion (%¥**) yith e¢=1 we have

n

én - 8g = n~1 Z IC(sy,n,¥) + R,

i=1

where

- 1[d%8 *
R, = }(;;?)a* , for some 0<a”<l1.

Now we state the conditions for the expansion (***) and hence the

expressio~ for R, to be valid: (see Serfling, 1980, pp. 43, 215).

(A) Apostle (1957, pg. 96) (d8/de)*, the righthand derivative, and
d?0/de?® exist everywhere in the open interval (0,1); with the first
continuous in the half-closed interval [0,1).
By expression (1') and (2') for d8/de and d?0/de? we have formulated con-
ditions (B) that satisfy conditions (A):
(B) There exists an open interval §g such that for all 0 in R
B-1: m(8,n), m'(8,n), m'"'(8,n) exist for all n;
B-2: there exists a constant c, such that for all §: |{-n|sc,
m'(0¢,ne)<0 for all Osesl.
To further obtain nfRn+0, wve need to examine the terms in expression (2')

and place appropriate conditions on the score function, $. The four terms are:

(34/38)g, = m' (B¢, ne)

(3%M/38%)g, = n'"(8¢,n)

(3M/3¢) = m(8¢,E-n)
(3M/3€38)g, = m' (8 ,&-n).
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These terms apply to R, with £=ﬁn.

We see that .. .ehavior of R, depends directly on that of ﬁn and in par-
ticular the differences ﬁn(s) - n(s), seS. We have given condition (C) at the
beginning of this section to keep m'(8¢,n¢) properly away from zero so as to
keep R, from exploding and to infer its behavior from that of ﬁn. The fcllowing
two lemmas imply that nt Rp*0 wpl.

Lemma A. Assume conditions (C). Put E=ﬁn in (2'). There exists constants a
and ny such that |d?6/de®| < a|ny-n|? for all 0Sesl and n2ng wpl.
Lemma B. Assume sy,S),...,5, are IID with PDF n. Then as n+» the following
holds:
a) ﬁn(s)»n(s) for all seS wpl;
b) {né[ﬁn(s) - n(s)]: seS} converges in law to a Gaussian process with
mean 0 and covariance function: j’
n(s)[1-n(s)] s=t
COV(s,t) =
-n(s)n(t) s#t ;
c¢) |np-n|+0 wpi;
d) nf|ﬁn-n| converges in lav and in probability.
These two lemmas imply tlat n? Rp?0 in prcbability and hence né(én-eo) is AN
since lemma A implies n}|R,|<a nf|nn-n|°|nn-n| and lemma B implies that |n,-n|-0

while n#lﬁn-n| remains bounded in probability.

4. SPECIFIC ASYMPTOTIC BEHAVIOR OF MLE's
Throughout this section ng will denote a true PDF and 6y the solution to
0=m(6,ng). The asymptotic behavior of the MLE is obtained from the previous

results of M-type estimators with score fun<tion 2£(s;8), seS. We discuss these
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aspects: goodness-of-fit, scale reproduction, and Fisher variance.

Most practical operational models satisfy condition (D-1). Thus, we can
say that for situations of interest, MLE's are consistent, én+eo as n*» and is
asymptotically normal even when ng is not a member of the parametric family
{ne:ﬁ real} generated by the set of operational models but satisfies the mild
regularity condition (C-2). We will employ this result with the 1PL, 2PL, and
3PL item response models in the example at the end of this section.

Let ng denote a member of a certain parametric family and consider the MLE
associated with the family. If for some 0, no=ng,> then the MLE is asymp-
totically unbiased, meaning 6p=6;. Let {91 denote a member of a different para-
metric family. If no=§91 then the MLE is asymptotically biased meaning 8g#6;.
If ng is not a member of any parametric family then the notion of unbiasedness
has no meaning.

Even if ng is a member of some parametric family not identical to {ng},
the bias does hold much information about how good the MLE may be. This is
because the parametrization of the family containing ng is as good as arbitrary
when it is not exactly the one generating the MIE. This leads us to propose a
different notion of accuracy, possibly supplying the information we usually
obtain with measurements of bias.

The information supplied by the bias is obtained from comparison of its
square to the variance, because the mean square error, a measure of total error,
is the sum of the squared bias and variance. When the bias overwhelms the
variance, one usually goes looking for another statistical procedure that can

control the bias. (What this compares to in [RT is the adoption of more complex

item response models).




15

A measure that seems to decompore into parts due to "bias" and "variance"

and does not depend on the arbitrary parametrization of a true family of PDF's

is as follows: for two PDF's n and & define
K(n,8) =Y n(s) log n(s)/&(s).

K(n,%) is nonnegative and equal to O when n={; K'(ng,ng) = -m(8,ng), thus

K(ng,ng) is minimized by 63. A second order Taylor series expansion gives

E K(ng,n3_) = K(ng,ngy) - % m'(8g,ng)n"10},

where we have assumed that the MLE has been modified appropriately to have the
moments for the approximation and we have used Theorem 1.

Thus E K(ng,ng ) behaves as a "total error” and K(ng,npy) behaves as "bias
squared" when it is compared to the last term on the right-hand side of the above
Taylor series. The quantity K(ﬁn,nén) is proportional to the deviance in
generalized linear models (see McCullagh and Nelder, 1983) and serves as a
goodness—-of-fit statistic. Values of E K(no,nén) and its approximate
components are displayed in Table 3 and discussed in the example at the the end
of this section.

Information of a different nature than bias, applicable to arbitrarily
parametrized families, is obtained by compariag the rank-order of estimated para-
meters with the rank-order of known abilities. Suppose there is a2 certain para-
metric family {{g} of PDF's with the property that ng € {{g} where ng may be
generated by any member of a population of examinees. But the family {{9} is
too complex, making its calibration unstable with reasonable sample sizes of
examinees. Thus, we prefer instead to use a more parsimonious family {ng} with
the MLE obtaining 8p as a limit when n0=§91, 81 fix»d, and n*e. Previous

discussion implies that 8g#8y, in general; but the bias here is nonsense. What
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is useful is a measure of the distortion between 6p and 6; as 6; moves
throughout the population. We do not propose¢ a measure but we do think that one
shculd be sensitive to reversals in the "O-scale". Table 3 displays reversals
for the 1PL and 2PL families and is further discussed in the example at the end
of this section.

Turning from bias to variance, we will now consider the predicament of
approximating the true asymptotic variance of an MLE when we do not know ng. A
ready approximation to 05 of .eorem 1 in §3 is the reciprocal of Fisher's
information: I(Bo)'1 (§2). But we know from §3 that it is not valid when ng is
not a member of the parametric family of PDFs that generate the MLE.

In general, the oa does not majorize I(BQ)'1 or viceversa. Thus, it is
possible that the reciprocal of Fisher's information can give either a conser—
vative or misleading approximation to the true asymptotic variance. Table 3
displays the true variance along side the Fisher variance to show both the gecod
and the bad; we discuss this further in the example.

Example. Listed in Table 1 are the true and modeled response probabilities of
five subjects on four ASVAB items. The true probabilities were actually
ovbtained from a very complex item recponse model which was calibrated or a very
large population. The subjects are ranked from lowest to highest going left to
right. The modeled response probabilities follow the 1PL, 2PL, or 3PL iisa
response models as indicated; they too were calibrated on a very large popula-
tion; Table 2 lists the values of the calibrated parameters. Table 3 is a sum-
wary of the asymptotic features of the respective MLE's, which we discuss as
follows.

First, note the magnitudes of the traditional notion of bias by taking

|01-6g| differences from columns (1) and (2). These values could easily change
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upon reparametrization cf the true response model; thus they are arbitiary.

Thus column (1) should only coavay the rank-order of the subjects.

Our notion of "bias squared” is found in column (5), K(ng,8p). These
values will not change if another paramet:-ization were imposed on the true
model. The worst fit it ' with subjent 5(2PL), referring back to Table 1 we
can see that the 2PL mode. provides poor estimates of all item response probabi-
lities. There are three good values; for example, subject 5(3PL) for which
Table 1 shows good estimates of item response probabilities.

Column (3), -m'(8p,ng), gives us a feel for the curvature of the likelihood
since n'm'(8p,ng) is an estimate of n—m'(én,ﬁn), the second derivative of the
log-likelihood. We see that the likelihood would tend to be flat for subjects
1,2 (3PL) even though ¥"1(,83) shows close agreement between the estimated and
true item response probabilities.

We present the "total error" E K(no,nén), column (4), for a sample size of
n=16, each item type represented equally. These errors appear to be equal
across models and subjects with exception of subject 5 (2PL) as noted bhefore.
The components of the total error are in columns (5) and (6) which ~an tell us
the proportion of the total error due to systematic bias: (5)/(4). The worst
proportion is found with subjects 1, 2 (1PL) meaning cthat the 1PL it inadequate
with these subjects.

We may average the "total error" and "bias squared,” E K(ng,ng,) and
K(no,ngo) respectively, over the subjects to get an overall assessment. These
averages are for the 1PL, 2PL, and 3PL models respectively: (error, bias?) =
(.06,.03), (.06,.03), (.04,.01). We see that on average there is at least 25

percent of total error that is systematic bias.
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The presence of reversals of the Vp-scale can be detected from column (2).

Both the 1PL and 2PL item response models have reversals at the lower abilities.

This happens because the 1PL and 2PL calibrations compensate good fit to true

response probabilities by distorting the 9p-scale. The Spearman rank correla-

tion between the true ability rank-order and the ©p-scale rank-order of the 1PL,
2PL, and 3PL models are respectively: 0.60, 0.67, 1.00. The numbers may be
interprected as an alternative theoretical goodness-of-fit, since we never would
know the true rank-order of ability, there is no practical gain in the measure.

We compare the true variance and the Fisher variance by using columms (7)
and (8). For the most part, the Fisher variance yields a conservative

assessment of precision; however, it can also be misleading as with subjects 3,

5 (2PL).

Remarks. 1) Column (3), -m'(6p,ng), can play the role of information. An
empirical assessment could be -m'(én,ﬁn). Also, ratios could play the
role of relative efficiency.

2) One should be cautious even if measures of fit, such as K(ﬁn,nén),
are favorable because as the example shows it is possible to have
reversals of the 8p~scale even if the fit is good.

3) We have refrained from making an elaborate comparison of the 1PL,
2PL, and 3PL models based on the data, because one needs to properly
account for sempling variability of the calibration process. Such a

study is reported in Jones, Wainer and Kaplan (1984).

5. SPECIFIC ROBUSTNESS OF THE MLE
Let n dencte an arbitrary true PDF, ng some fixed PDF, {ne} a parametric

family of PDF's that induces the MLE. Let 6(n) denote the solution to O=m(8,n).
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From Tueorem 1 in §3 we have that 0,+6(n) with asymptotic variance o2=02(n).
Note that we will not assume that n or ng belongs tc {ng}.
The asymptotic bias of the MLE relative to ng and {ng} is defined as |6(n)
- e(no)l. Let P¢ denote an e-neighborhood of ng, for n belonging to P, we want
to quantify the degradation of bias and variance. We say that the robustness of
the MLE is measured by the amount of degradation of the maximum bias

b(e) = sup |8(n) - 8(ng)|
nePe

and the maximum variance

v(e) = sup o%(n).
neP

If b(e) were large relative to v(e), then the maximum variance would not be
a very important quantifier of robustness. We confine study te b(e) in this
paper.

There are several impcrtant notions for quantifying the robustness of an
estimator. Among them are the sensitivities of a parameteric estimator, a

fitted value, or a predicted value when one observation is deleted from the

sample. These measures are called, respectively, gross error sensitivity
(Huber, 1981), change in fit sensitivity and prediction sensitivity (Krasker and
Welsch, 1983). The gross error sensitivity is related directly to the maximum
bias as stown below. We formulate these quantities and demonstrate their use
with the 1PL, 2PL, and 3PL item response models.

Another robustness notion is the sensitivity of the maximum bias as € is

varied. Certain values of € can cause the maximum bias to explode; the smallest

such value is called the breakdown point (Huber, 1981). We tormulate this quan-

tity and demonstrate its use with the 1PL, 2PL, and 3PL models also.
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5.1 Sensitivities Based on Deletiomn

The gross error sensitivity is defined as

r* = max|IC(s,ng,¥)|.
s

From the leading term approximatfan of section 3.2, we see that it is propor-
tional to the maximal influence exerted by anyone observation on the error of
estimation, én - 06(ng). It is related to the maximum bias b{e) as follows.

Recall from §3.2 that [6(ng+e(£-ng))-0(ng)] e+ YIC(s,nq,¥)E(s) as €+0. Let P

be the e-contamination neighborhood defined by P¢ = {n: n=ng + e(£-ng), £

arbitrary PDF}. Then

sup|0(n)-8(ng)| = e sup|Y IC(s,ng,¥)E(s)].
nePe £

Thus

b(e) 2 ¢ T*.
So that for small e, 7* measures the rate of growth of the maximum bias over the
e—-contaminated neighborhood.

For M-type estimators 1" = = is equivalent to a zero breakdown point,
meaning that any departure from ng will cause the maximum bias to explode.
Either condition also implies that the estimator is not continuous at ng when
reviewed as a function of n (assuming, of course, a complimentary topology on
the set of PDF's). An estimator is qualitatively robust if it is continuous
(Huber, 1981), thus an M-type estimator is not robust if 7* = = or the breakdown
point is zero. -

The gross error sensitivity also measures the maximum change in the estima-
tor caused by deleting one observation. Let ﬂn(l) and ﬂn(O) denote the
empirical PDF with and without sj. Let én(l) and én(O) denote the corresponding

MLE's. Then using the direct defirition of the influence curve (§3.2) with s=sy,
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n=ﬁn(0) and €=1/n it is easy to show

6n(1) - €,(0) = n~1 IC(sy,n,(0),¥).

max |én(1) - én(0)| z a1 v*,
i

The change in fit sensitivity concerns the effect of deleting one observa-

tion, sj, on the estimated logit, g(én;xi). This change in fit is g(én(l);xi)

- g(én(O);xi) H g'(én(O);xi)[én(l) - én(O)]. Putting this together with the

estimator sensitivity we have

g(6n(1) 5x4)-g(8,(0) 5x5)=n"1g" (6, (0) ;x4) IC(s4,0,(0) ,¥) .

Thus the shape of g'(0;x)IC(s,n,¢) would indicate robustness as would the size

of the change in fit sensitivity:

T** = max|g' (8;x)IC(s,n,¥)]|.
S

Prediction sensitivity concerns the effect of deleting an observation from
the sample on the predicted logit of some future item, g(én;z) where z is yet to
be administered. Let A=g'(0;z), then by a Taylor series approximation,
g(én;z)zg(e;z)+k(én-9). Hence the change in prediction is measured by the
change in Xén, and M\IC(sj,n,¥) measures this change due to deleting s;. To be
meaningful this change must be weighed relative to its standard deviation,

X[Z IC(s,n,¥)? n(s)]i. Thus the shape of the ratio indicates robustness as

would the prediction sensitivity:

x J1c(s,n,¥)|
s [§ 1C(s,n,9)? n(s)]?

Y =

We can simplify this quantity to s ow the direct dependence on the score func-

tion by using the formula for the influence curve:
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Y = pax LICH) 1 I
s [Y #(s;0)* n(s)]?

where 0 is evaluated at O(nj.

Now w2 study the various se:rsitiviti:cs to get a feel for their implications

* IRT using the 1PL, 2PL, and 3"L models as examples. Graphs of these quan-

tities are useful but require specific values for item parameters and do not
lead to any more profound conclusions then just analytic circumspection. Graphs
are most useful, however, with actual data, providing diagnostic information on
the fit of the model. We study only the MLE induced by {ng} and do not look at
general M-type estimators. We also restrict this study to sensitivitief to
departures from the parametric model, that is we let np=ng for some value of 0.
Huber (1980) remarks that a wetter indication of robustness is to allow 1 to
roam around a "¢ neighborhood of ng while looking at the sensitivities. We do
not have the analytical me :ns to do tLis at this time.

Consider now and for .he rest of this section the MLE with operational
models {N(8;x):xeX}. With ng=ng, -m'(8;ng) = ¥ w(s;8) 2(s;0) n(s;0) and with
¥(s;0) = 2(s;8) = g'(8;x)[u-N(8;x)], we have

&' (o0 [u-N(e;x0)]
IC(s,n,2) = Y g'(8;x)? v(8;x) p(x) .

Define
M(0;x) = max{T(0;x), 1-1(8;x)},

the various sensitivies to depar:.res from ng=ng are

max g'(0;x) M(8;x)
X

r* =
Y £'(8;x)% v(8;x) .(x)
max g'(0;x)2 M(8;x)
Y** X and
T g'(8;x)? v(8;x) p(x)
: _2%7




max g'(8;x) M(0;x)
x

T = .
[T &' (8;x)% v(8;x) p(x)]}
Example 1. The 2PL itew response models have g'(0;x) = a(x) where =>a(x)>0. if

a(x) £ ap, then the models are called the 1PL item response models. 7* is
finite provided max a(x) is finite. If the generic item pool X is finite then
v* ig always finite. If the generic item pool is not finite, it is possible
that sup a(x)=e but practical reasons would disallow this from happening because
an "infinitely discriminating item" is rare.

Exampie 2. The 3PL item response models are defined as II(8;x) = [l-c(x)] R(0;x)
+ c(x) where 0<c(x)<l and R(0;x) is a 2PL model. De€ine vj(0;x)

= R(0;x)[1-R(8;x)]. It can be shown that g'(8;x) = [1-c(x)]a(x) v1(0;x)/v(0;x).
1* is finite provided max a(x) is finite, the discussion in the nrevious example
applies here too.

Example 3. For all the 1PL, 2PL, and 3PL models, because of the behavior of
g'(8;x), T** and 7 are finite if and only if max a(x) is finite. 7** and 7, but
not 1*, are invariant for changes of scale in a(x) and b(x). Presumably c(x) is
scale free as it is a probability of the examinee guessing the correct answer to
item x.

The examples lead to the general conclusion that 7, 1*, and 7** are finite
if and only if max|g'(8;x)| is finite. For the 1PL, 2PL, and “PL models this
condition is equivalent to having max a(x) finite.

Because the sensitivities change as 0 changes, their variation over the
entire range of practical 6-values should be studied to properly assess robust-
ness in IRT. This allows for the tact that the MLE procedure must estimate
unique 0 parameters for different subjects. This is in marked contrast with

estimation in logistic regression -- the same estimation procedures as IRT but
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the object is to estimate a single 0 (such as lethal dose 50 or the vector of

parameters in one response function). Because the sensitivities must be viewed

globally, procedures that are robust for logistic regression may not be directly
transferable to IRT.

Consider what happens as |0|+=. The denominator of T* and 7** is Fisher's
information; for 7, it is just the square root. For extreme 0's it is reason—
able to assume that any finite set of generic items X, item responses hold
little information about O; thus it is probable that the denominators of the
sensitivities approach zero as |6|+». Unless the numerators approach zero at
the same or faster rate as the denominators, the sensitivities will explode.
Applying this idea to each sensitivity, we conclude that r* always explodes and
for models with v(8;x)-+0, ¥* and 7** both explode. Of the models considered
before, the 3PL is the only one having v(8;x)>0 as 0--=; thus 7* and 7™ are
bounded for the negative extremes of ability.

These results imply that the MLE procedures are not robust because the
maximum b. .o in an e-contaminated neighborhood is approximately €7* and 7* is
unbounded as |8|+; thus, the MLE cannot tolerate any contamination at extreme
8. The 'PL fairs a little better than the 1PL or 2PL as 8+-« since its gross
error sensitivity grows a little slower. Thus to achieve full protection one
must look outside the class of MLE procedures, which means we have to sacrifice
efficiency. (Contrast this with the location problem :there the median is the
efficient procedure for logistic errors and it is optimal for minimizing the
aaximum bias; Huber, 1981).

5.2 Breakdown Point
The worst possible bias at ng is defined as b(1) = sgp]ﬁ({)-e(no)|, vhere

the supremum is over all arbitrary PDFs, §. Let P¢ be an e-neighborhood of ng.
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The breakdown point, e*, is the largest € for which b(:) is less than the worst

value:

e* = supfe : b(e) < b(1)}.
The value of ¢* depends on the kind of P¢ chosen; however, it is sometimes
adequate to consider just one kind of neighborhood. In IRT, b(1l)=e.

We use the following kind of e-neighborhood: Let 0<II<1 and define
v = I(1-l). Denote the interval D(0;x) = [H - evf, m+ ev%] when Il = [I(0,x);

8 is fixed. Denote the subinterval of [0,1] by D*(8;x) = D(8;x}9,1]. The
collection of intervals {D*(O;x)}, x fixed, is an e¢-envelope of the item
response function F(8;x). Define P¢ g = {n : n(s) = m™*(x)u [l-ll"'(x)]l"u p(x);
m™(x)e D*(O;x)}. It is an e-ueighborhood "centered" at ng.

Define b,(e) = sgp[O(E)—O(no)] and b_(e) = 1Ef[8(£)-9(no)]. Then
b(e) = max{by(e), - b_(e)}. We consider b,(¢) first.

Let ng = ngy. Define N*(8g;x) = min{1,N+ev}} with N=N(8g;x). It is clear
that H*(Oo;x) € D(0p:x) and nso. the corresponding PDF, satisfies m(9;n$0)>m(9;n)
for all 0 and all n € P¢ g,. The maximum "positive” bias satis ies

by(e) = inf{0 : m(O;nso) < 0} - 8g.
We have breakdown if b,(€) = b(l) = ». To avoid this it is necessary that

€ satisfy lim m(e;nao) < 0. Using the definition of m(0;n) we have

0-+ee
n(8;ng,) = Y 8'(8;x)[M(Bg;x) - M(8;x)]p(x) + € ¥ g'(e;x)v(eo;x)ip(x),
Letting 6+= and denoting g'(=;x) = lim g'(8;x) we have an equation for the
"positive" side breakdown:

+ = ) 8 (=x) [1-1(8g;x)] p(x) |

T Y vt p

Similarly the "negative" side breakdown is:
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- = 1 &' (==3%) 1(8g;x) p{x)
T g'(-=;x) v(8;,x)? p(x)

And the breakdown:
et = min(et, €7).

For a fixed 8y, all MLE procedures for IRT have a breakdown point that is
not 0 for P¢ neighborhoods considered thus far. But as |8g|+« the picture
changes: ¢* = 0 if either (8g;x)+1 or 0 for all items x. Thus the 1PL and
2PL induced MLEs have zero breakdown, meaning they have no tolerance for depar-
tures from their models. The 3PL induced MLE has zero breakdown, but for 0+-e,
the "negative" sided breakdown is not zero, so it could tolerate some departure
from its model there.

Example. The following displays the "positive" and "negative" breakdown points
for the 3PL model with a(x) = ap and c(x) = cg.

co e~ et

.025 .16 0
.05 .23 0
.10 .33 0

.20 .50 0
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TABLE 1. ITEM RESPONSE PROBABILITIES
MODEL ITEM 1 ITEM 2 ITEM 3 ITEM &
Subject:l
True .42 .27 .03 .36
1PL .32 .30 .19 .32
2PL .30 .30 .08 .30
3PL .26 .25 .04 .23
Subject:2
True .32 .26 .05 .26
1PL .26 .25 .15 .10
2PL .27 .27 .05 .26
3PL .26 .26 ' .05 .23
Subject:3
True .19 .28 .11 .20
1PL .22 .21 .12 .07
2PL .27 .27 .05 .26
2PL .27 .28 .10 .24
Subject:4
True .50 .44 47 .60
1PL .55 .53 .38 .55
2PL .46 .46 .50 .53
3PL .46 .43 .46 .41
Subject:5
True .89 .77 .88 .95
1PL .88 .88 .79 .88
2PL 72 .72 .98 .84
3PL 91 .73 .85 .96
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PARAMETERS OF OPERATIONAL MODELS {ng}
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TABLE 3. ASYMPTOTIC PARAMETERS OF MIE's

SO E) LIE ) OM (%) (6)* (M (8
. - . - 2 -
Model 8y 8 -w'(8g,mg) EK(ng,np,)  K(ng,ng,) —I="(8g,me)n lag o9 1(8g)~1
Subject:1
1PL -2 -.2(3) .10 .07 .04 .03 9.47 10.26 ;
2PL -2 -.3(3) .10 .04 .02 .02 7.61 9.76 |
3PL -2 -1.2(1) .00* .03 .03 .00* 400.00 400.00 ;
Subject:2 ;
1PL -1 -.6(2) .10 .07 .04 .03 8.68  10.26.
2PL -1 -.6(1.5) .09 .03 .00* .03 11.42  11.76 :
3PL -1 -.8(2) .01 .04 .00* .04 133.33  133.33 4
Subject:3 :
1PL 0 -.9(1) .08 .06 .03 .03 13.33 13.33 .
2PL 0 -.6(1.5) .09 .06 .02 .04 15.92  11.76
3PL 0 -.1(3) .06 .04 .01 .03 18.06 16.67
Subject:4 E
1PL 1 1.2(4) 12 .04 .01 .03 8.16 8.16 |
2PL 1 1.1(4) .24 .05 .02 .03 4.12 4.12
3PL 1 1.0(4) .36 .05 .02 .03 1.03 1.04 1
Subject:5 )
1PL 2 3.8(5) .06 .06 .03 .03 14.08  16.00 3
2PL 2 3.3(5) .06 .14 .07 .07 36.36  18.18 |
3PL 2 1.9(5) .60 .03 .00* .03 1.68 1.66 é
* na16 36

t Rank order appears in parenthesis.

Prr—



Bapts sont of Deimse

12 Sedenee Tacheical Infornation Conter
Caseron Station, D14y 3
Alozandria, W 12314
Mte: TC

3 Ir. Mmita Laacaster
fccession Policy
SABR/NIAL/NPUFN/ N
Pentagon. fose 2271
Nashingten, DC 20301

1 v. dorry Lohaes
INSD (RN
Seshingten |, BC 20301

1 br. Clarence Neloreach
W9, NEPCOM
erer-p
2500 Groen Doy Road
Noprth Dhicago, 1t $0044

1 Military Msistant for Training and
Porsonnel Techaolegy

Od41ce of the Under Secratary of Defens

for Research & Enginsering
Roos 3029, The Pantagon
Sashingten, 5C 20301

10, 0. Steve Selloan
0¢41co of the Assistant Secretary
of Defense (WA § L)
2524% The *antagon
Mashington, 5C 20301

1 br. Robert A. Wisher
U.S. Arey Institute tor the
Dehavioral and Social Sciences
3001 Exsenhower Avenus
Mezandria |, VA 22733

37

Q

Civilies Agencies

1 Br. Patricie & Matlr
NIE-DN Dlgg, Nep 0 7
1200 1% 8t., W
Seshisgten, 3¢ 20200

10, Vors 8 Wrry
Porsannel M Comter
Dftice of Persesnel Nansgossnt
1900 £ Btraet W
Nashington, 0C 20415

1 . Thesss A. lare
4. 5. Coast Buard Institute
?. 0. Sebstation 19
Oklahans City, OX 73149

100, Joseph L. Young, hrrector
Meoery | Cognitive Pracesses
Satimal Science Foundation
Sashiagton, BC 20350

Private Secter

1 0r, Erling D. fndorsen
Dupartamt of Btatistics
Rudientronde b
1633 Coparhagen
DA

1 0. lsac Dejor
Educations] Testing Service
Prisceten, B 00430

1 v. Renucha Biremdane
Schoel of Education
Tol v Iniversity
Tol Aviv, Rasat Aviv é9978
Isrsel

1 . weraer Birke
Personalstassast der Dundesuehr
$-3000 Sonln
WEST GEMWY

1 0. R Darrell Dack
Deporteent of Education
University of Dhicage
Chicage, IL 40437

1 W, Arneld Dedrer
Section of Peychological Mesearch
Caserne Petits Dhatasu
one

1000 Drussels

| ST

1 &, Rebert Irewnan
Asericen College Testing Prograss
P. 0. dou 180
Ina City, 1A 52203

1 0. Slem Bryan
4208 Pce Road
Dethesda, M 20817

1 br. Ernest A, Codotte
307 Stekely
Unaversity of Tennessee
Knonville, TV 37914

1 Br. dow ). Carroll
407 E1140tt Re.
Chapel Hill, NC 27514

Private Sactor

1 br. Noraen L1i¢é
Dogt. of Poychelegy
tniv. of 8o, Colifernia
University Pard
Los Angeles, CA 90007

1 br. Hass Crosbog
Education Research Conter
Universaty of Leyden
Derhaavelsna 2
2334 EX Loybem
The NETHERLADS

1 Lee Cronbach
14 Laburava Rosd
Athertos, CA 91205

1 CTO/MchvanHill Library
2500 Sarden Road
Henterey, CA Y2940

1 Wr. Tisethy Bavey
Unaversity of Hlishors
Separtaent of Educational Psychology
Urbana, 1L 41001

1 br. Dattprasad Divgs
Syracuse Untversity
Departeant of Psychology
$yracuse, WY 13210

1 br. Fesanuel Doachin
Departaent of Psycholc,v
University of 111100
Chaspargn, 1L 1020

1 br. Hea-ka Bong
Ball Feundation
800 Roosevelt Road
Wilting €, Suite 208
§len Ellyn, IL 40137

1 W, Fritz Drasqon
Departaent of Payrhology
University of Illinois
Y £, Daninld St.
Chaspaign, IL 61820

1 v, Stephen Dunbar
Lindquist Conter for Measuresent
Umversity of fowa
1o City, 1A 32242

Private Secter

1 br. John 0. Edtins
University of Illineis
252 Enginsering Resesrch Laberatwry
103 Seuth Matheus Stroeet
Urbaag, IL 41001

1 br. Susan Eshartsen
PSYCHRLOBY DEFARTHENT
UNIVERBITY OF KAMIAS
Lawrence, K§ 86083

§ ERIC Facility-Acquisitions
33 Mgy Avesus
Dethesda, WO 20014

¥r. Dengasin A, Fairbant, Ir.
Perforsance fetrics, Inc.
9075 Collaghan

Suite 223

San Mntonie, T1 79228

¥r. Locnard Feldt

Lindquist Center for Measursent
University of lows

Towa City, I8 S2242

Unav, Prof, Br. Serhare Fischer
Lisbiggasse 3/3

A 1010 ¥ienna

MSTRIA

Professor Donald Fitzgerald
Universaty of Wew England
Aroidale, Mew South Nales 2331
MSTAALIA

br. Dexter Fletcher
University of Oregor
Depirtrent of Cosputer Science
Eugene, DR 97403

Br. John R, Frederiksen
Boit Beranek b Newaan
30 Moulton Street
Casbridge, B 02!28

Wr. Janice Bitéord
University of Massachusetts
$chool of Education
haherst, B¢ 01002

Privete Secter

i br. Rebert Slaser
Leeraing Research § Developamt Conter
miversity of Pittabwrgh
M Flore Rroet
PITTOOURSM, PA 13240

10, fervin 5. Slack
217 Stone Hall
Corasl] University
Ithaca, WY 10053

1 br. Dort Brom
Johas Nepking University
Departaent of Psychalogy
Charles § 34th Street
Baltisere, M 21210

1 Or. Joses 6. Bremmo
University of California, Dertaley
Departseat of Education

dritlyy L, CA ;j

1 Dipl. Pad. Michael V. Nebon
Universitat Dusseldors
Erzichungsu stanshaitliches lnst. 11
Universitatestr, 1
§-4000 Busselder 1
WEST fERMARY

1 br. Ren Hashleten
Shool of Education
University of Rassachusetts
Aeoherst, M 01002

1 rrof. Lutz F. Hernke
Universitat Dusseldoré
Erzishungsurssenschattliches Inst, 11
Unaversitatsstr, 1
Busseldors 1
WEST GERMANY

1. . Horst
477 6 Street, 1104
Chla Vista, CA 90010

1 0r. Lioyd Husshreys
Departaent of Psychology
Unaversity of I11inois
603 East Daniel Street
Chaspuign, 1L #1020

38

BEST COPY AVAILABLE
ec COPY AVAILABL

Aruitoxt provided by Eic:




Mavy

1 Code N7i}4
At Arthur S. Dlarwes
Naval Training Eauipoent Conter
Orlando, FL 32813

1 Be. Mick Dot
Office of Raval Research
Liaison Défice, Far East
APD Saa Francisco, CA 94503

1 Lt. Rdexander Bory
fopliet Psycho.ogy
Ressureeent Division
AL
WS Pensacola. Fi 32508

I Dr. Redert breaux
NAVTRAEQUIPCEN
Code -0%3%
Orando, FL 326:1

1 b, Mobert Larroll
VP 113
Wash.ngton , DT 20370

1 br. Stanley Collver
Q¢f1ce of Naval Technology
000 N, Quincy Street
Arlington, WA 220

1 COR Mike Corrar
Office of Mava 3esewch
860 M. Buincy .t
Cote 270
Mlington, VA 22217

1 br. Jobn Ellis
Mavy Personnel RAD Center
San Diego, CA 2052

1 DR, PAT FEDERICO
Cote P13
”i
Son Diogo. CA 92152

1 W, Pl Feley
Navy Persaons] RED Conter
Sen hingo, CA 92152

1 Ms. Rebecca Hetter

Navy Persenne] RED Conter (Lode 42}
San Diogo, CA 92192

39

ERIC

Aruitoxt provided by Eic:

Mavy

1 W, Dick Neshaw
MAVOP-133
Arlingcon Annex
Rooe 2034
Washington |, BT 20330

1 0. Norpan °. Kerr
Chief of Maval Education and Training
Code A2
Navai Mr §tation
Peasacola. FL 32500

t Br. Leonamg Frovker
Navy Personne]l RED Center
$an Dingo, CA 92130

1 b, Daryll Lang
Navy Psrsonnel RO Center
San Diego. CA 92152

1 B, Miilias L. Maloy (02
Chint of Maval Educatior and Training
Naval mr Station
Pensacola, FL 32508

1 Dr. Jases Keiride
Navy Persoanel RD Center
San Dingo, CA 92152

1 br illi1as Nontague
WPRDC Code 13
Sar Diego, CA 92137

1 Bs. Kathleen Acreno
Navy Personnel M40 Center (Code 62!
San Dingo, CA 92132

1 Lidrary, Code P20IL
Navy Personnel RGD Conter
§a8 Diego, CA 92152

i Technical hrector
Navy Perssane] RED Conter
San Diego, CA 92152

& Personnel § Training Research Progras
Code 4201
Défice of Maval Research
rlingten, VA 22217

1 0. Corl Ress
CNET-#0D
Duileing 9
Sroat Lakes WTC, 1L 60000

Navy

1 W, Brew Sands
WPRDC Code 42
San Diego, CA 92132

{ Dr. Rary Schratz
Navy Personne! RED Conter
San Diogo, CA 92132

1 0r. Méred F. Secde
Semor Scaentist
Code T

Naval Training Equipsent Conter

Orlando, FL 32013

1 Br. Richard Snos
Liatson Scaentist
Détice of Naval Research

Branch Dff1ce, Londor
Bor 3Y
FPO Mew York, NY 09550

i br. Richard Sorensen
Navy Personne] RED Center
San hiego, Ch 2152

! Wr. Irad Syspsor
Navy Personnel RGD Center
San Drege, CA 92132

1 br. Frank icane
Navy Personnel RED Center
San Biego, CA 92152

1 Dr. Edward Neysar

O¢f2ce of Maval Research (Cose 411545

200 Kortn Guincy Street
Arlington, VA 22217

1 0. Ronald Sertzean
Maval Postgratuate School

Departaent o¢ Ads:nistrative

Sciences
featerey, CA 97940

1 Dr. Douglas Hetzel
Code 12
Navy Personnel R0 Conter
San Diego, CA 92152

1N, WRTIN F. NISKOFF

WAVY PERSOMMEL MY § CENTER

SAN DIERD, CA 92132

Ravy

1 W John H, Belte
Rovy Personnel RAD Center
Ban Diego, CA 92152

1 0. Nallace Wl feck, 111
Navy Personne! RED Conter
San Biego, CA 92152

Nar1ne Corps

1 Col. Ray Leidich
Neadquarters, Nerine Lorps
!
ashington, BC 20300

1 Neadguarters, U. D. Maring Corps
Cote 1-20
Noshingten, IC 20300

1 Special Mssistant for Marine
Corps Natters
Cade 1000
Défice of Maval Research
800 %, Suincy St.
Arlingten, WA 22217

1 Major Frank Yohannan, USHC
Neadmuarters, farine Corps
(Code W1-20)

Washington, 8 2030

BEST COPY AVAILABLE

ey

1 br. Xent Eaton
Aroy Ressarch lastitste
3001 Ersenhouer Bive.
Mesandria  , WA 22333

1 0. Clessen fartin
Aroy Pesearch Jastitute
3001 Eisenhover Bivé.
Aeoxandria, vA 22330

1 br. Karen Mitchel!
Aray Research Institute
3001 Eisenhover Blvd
Alerandria, W 2231}

1 0. alliae E. Nordbrock
FAC-ADCO Box 25
AP0, Ny 09710

1 0r. Harold F 0'Beal, Jr.
Director, Traiming Research Lab
fAray Research Institste
5001 Eisenhomer Avnue
Mexanéria, W 22337

| Cossander, U.5. Aray Research lnstitute
for the Behavioral & Sotial Sciences
ATTHC PERT-DR (Br. Judith Orasany!
3001 E1senhover Avense
Aesaniria, W 2233

1 W, Rabert foss
U.S. Jrey Research Institute for the
Social and Dehavioral Sciences
3001 Eisenhover Avenue
Mezandria, VA 22333

1 br. Robert $aseor
U. §. Aroy Research Institute for the
Behavioral and Social Sciences
3001 Eisenhower Avenue
Mexantdria, VA 22333

1 br. Joyce Shields
Arey Ressarch Institete for tye
Behavioral and Social Scimces
3001 E1sanhower Rvesue
Meoxandria, W 22333

10, Hilde Ming
R oy Xaseorch institste
3001 Eioonhouer Ave.
Alexandria, ¥ 22333

fir Force

1 ¥ nihae B Mley
AFNRL /90T
Drooks AF)
» T 1023

10, Earl A Alluiss
WO, AFWRL (AFST)
Drosks #FD, TI 78235

1 Wr. Raysond E. Christal
MFWRL /MOE
Irosks AFD, TX 78233

I Dr. Méred R. Fregly
MOSR/N.
Bolling AFD, BC 20337

3 I, Sherrie Bott
AFHR./MOD)
Irooks #F)

, 08233

1 Dr. Patrick Kylloner
AFIRL/NOE

brocks AFD, 1 TR233

1 br. Randolph Park
AFWR/HOAN
Drooks AFD, TI 70233

1 Or. Roger Pennell
Mr Force Husan Resources Laderatery
Lowry #FD, CO B0230

1 b, Malcols Ree
AW/
Brocks AFD, 11 2133

t My, Bill Steictione
AF/RPI0A
SELM Pentagon
Nashisgton, C 20330

1 Or. John Tongney
FIR/
Delling MFD, XC 20332

1 Major Jobn Beish

AFHRL7MOM
Srosks M , I TR2D3

40




Private facter

1 . Roven ks
Separtamt of Education
Iniversity of Aioerta
Edaonton, Alberts
-]

£ 0. Jack Weater
222 Cenlitge 8¢,
10sing, N 40904

1 be. Muynh Noynd
Collage of Education
University of Seath Carolim
Calombis, ST 29208

1 0. Demglas K. Jones
Mivanced Statistical Technolegies
Corporation
10 Tratalger Court
Lowrenceville, N 08148

1 Prefesser Jown A, Keats
Bopartaent of Paychelogy
The tiversity of Newtastle
5.0 2308
MSTMLIA

10, Bill:08 Koch
University of Texas-fusty’
Ressuresent wnd Evaluats  Conter
Mitan, 1 79703

1 ¥r. Thesas Lvonard
University of Biscons
Degarteent of Statistics
1210 dest Dayton Street
Radison, U] 53703

1 . Alan Lesgold
Laaraing MD Conter
Umiversaty of Pattshurgh
393% 0°Hara Street
Pittsburgh, PA 13240

1 v, Richas! Levine
Departaent of Educational Psychology
0 Educaticn N4y
University of 11linois
Chaspaign, 1L 41804

ERIC

Aruitoxt provided by Eic:

Priveie Sector

1 be. Charles Louis
Facultait Sariale Betenachappen
Rijisuniversiteit Droningee
Ouie Detoriogeatrast 23
13 Sronlngen
Nethor | ands

1 br. fabert Lien
Colloge of Education
University of 11linais
rbana, 1L 6100

1 be. Rebs. o Lockean
Contor for Naval Malysis
200 Nerth Joawogard St.
Aloxandria, WA 22311

1 e, Froderic N, Lerd
Educations! Testing Service
Princeten, W 08541

1 W, Jases Lusston
Fwartsent of Psychology
University of Western Mustralia
Nedlands U.A. 400V
ASTRALIA

10, Bary Barco
Stop 31-€
Educational Testing Service
Princeten, W OBAS)

1 Wr. Rowort McKinley
Umversity af Taledo
Dest sf Edurational Psychology
Toinds, OH 43604

1 0. Barbara Reans
Wusan Resources Reseerch Organization
300 North Mashingten
Meandria, W 22314

1 . Robert Mmslovy
Educationa) Testing Service
Princeton, W 0057)

e, U Alan Wi comandor
University of Okiahoss
Departoent of Psychology
Otlsheas City, OK 73049

Privats Becter

1 Ir. felvin L. Bevick
334 Lindguiat Conter for Poaswramt
Winrsity of Jome
fema City, 18 32282

1. Josen Blsen
WICAT, 1mc,
1073 Seu.b State Btreet
bree, ¥T BNOT?

1 Yapne N, Pationce
foorican Councl] an Education
KD Testing Service, Suite 20
e Dupont Cirle, W
Sashington, OC 20034

§ e, Joses Pau)sen
Sept. of Ps che’ gy
Portland Stete Smaveirsitv
p.0. bos 731
Portland, OR 97207

1 Ir. Jozes A, Paulsen
Portland State University
?.0. bax T8I
Portiand, OR 97207

1 Wr. Mark ). Rechase
.1
P. 0. Dot 169
Tows City, 1A S2243

107, Lonronce Rugn~
403 £l1a Avanue
Takoas Park, M9 20012

10, 0. fyan
Departeent o Education
iversity of South Corolina
Colushia, §C 29700

1 PROF. FUMIND SFMEJIMA
BEPT. OF PSYCHILOGY
UNIVERSITY OF TEMMESSEE
KNOIVILLE, ™M 37014

1 Frask L. Schaidt
Departaent of Psychology
Py 8
Searge Uashing'on University
Washington, ¥ 20032

Private Sector

1 Lowell Schesr
Peychalegical & Buantitative
Foasdations
Collsge of Education
Univarsity of lome
1oms City, 1A 52262

1 Wr. Kuzue Bhigeaasy
7-9-20 Zugenuss-Kargan
Fsjussma 234
I

1 Wr. Willias Sig
Conter 0r Mavi! Amdlysis
200 rorth Deavreqard Street
Mexondria, ™ %14

10 W Malle  -wmatko

Progras M
Nanpower B -« and Mvisery Services
Soithywi 1cution

901 Noth . Street
Moanc, ia. v 22° .4

1 Dr. Paul Spechasn
University of Missour)-Zolwebia
Departaent of Statistics
Cotusbia, M0 63201

1 Wertha Stocking
Educational Testing Service
Princeton, W 0MS41

1 Br. Poter Stolott
Conter for Naval Analysis
409 Morth Seauragard Street
Aeand 14, WA 22311

1 Dr, wic2ae Stout
Umiversity of Illinois
Departeent of Matiwsstics
Urbana, It 41801

1 Br. Hariharan Seasinathan
Ladoratory of Psychosetric and
Evaluation Research
School nf Education
University of Nassachuseits
Asherst, MA 01603

! Dr. Xiduai Vatsuoka
Cosputer Dased Education Research Lab
252 Enginesring Res. reh Lodoratory
Urbana, 1L 41801

gEST COPY #

.

Privata Secter

197, Nawrice Tatsuska
226 Education D1ty
1310 8. Sieth 81,
Chaspaign, 1L 61620

1 0. David Thissen
Sepertannt of Paychalegy
Saiversity of Kansas
Lawrenca, K 44044

1 M. Bary Thesasson
University of Jilineis
Bepartosst of Educational Peychology
Chaspargn, IL 41020

1 Ir. Robert Tsutshama
Departaent of Statistics
University of Nissour:
Colushia, M 42201

1 br. Ledyard Tucher
Univorsity of 1linnis
Separtsent of Psychalogy
403 E. Doninl Stroet
Chaspaign, IL 41020

1. V. AR Uppulery
Union Cerbide Corporation
Nuclear dvision
2000y
Oak R1dge, TN 37230

1 Ir. David Vale
Mssessaent Systess Cerporation
7733 Umaversity Avenue

- ite
ft. Pa ES L
10! niner

Bivision of Psychalogical Stuties
Educvtional Testing aervice
Princeton, N 08340

1 br. Ming-Mei Mang
' At Conter for Measuresert
University of lowms
Tows City , 1N 32242

1 Dr. Braoe Vaters
L]

300 Morth Washington
Aexandria, VA 22314

Private Bector

10, David 3. Weims
Neb0 Elliott Mall
University of Mianesets
7 &, Mver hosd
Ninsoepilis, W TSI

10, hand R, %lcm
University of Southera Califerma
Separtasnt of Psychelogy
Les Angeles, TA %7

1 Gersan Nilitary Regpressatative
ATIN:  Woligang Bildegrebe
Sireitirasftesst
$-3300 Bomn 2
4000 Drandyuing Street, W
ashingtom , OC 20014

1 0r. Druce Millioee
Departoent of Efucational Psychelegy
Jajversity of 111ineas
Urbana, 1L 41801

1 Mg, Merilyn Vingersky
Eoucational Testing Service
Frinceton, W) 08341

1 or. Seorge bong
Biostatistics Ladoratory
Pescral Slosm-Kettering Cancer Center
127 2k verue
¥ew York, KY 10021

1 Dr. Sendy Yon
CT0/Mchran Wil
Dol Moate Research Park
Nenterey, CA 97940

42




